New phenolic compounds belonging to the oleuropein and ligstroside aglycon family have been discovered in oils from the Koroneiki and Mission olive varieties.
The Mediterranean diet, which is known for its health benefits, relies heavily on extra virgin olive oil as a source of phenolic compounds. Research has identified new phenolic compounds in olive oil, such as oleokoronal and oleomissional, which may only be present in certain varieties or dependent on production parameters.
The Mediterranean diet is the world’s most studied dietary pattern and has been shown to provide valuable health benefits and reduce the risk of numerous diseases.
extra virgin olive oil is the major source of lipids in the Med Diet and is consumed on a daily basis.extra virgin olive oil contains powerful phenolic compounds that exert many of these known health benefits, namely hydroxytyrosol, tyrosol and their derivatives.
Understanding the chemical identity of the various phenolic compounds is critically important for furthering research and for permitting specific health claims in relation to specific phenolic compounds. However, it has been noted that some literature does not accurately define terms and can often be misleading, in some cases causing problems in translating results and outcomes. Without a doubt, there are technical difficulties; however, there is no officially defined method for the measurement of phenolic compounds, particularly in relation to making health claims, something that the European Union Legislation (EU 432/2012) has recently permitted.
According to research published in OLIVAE, key compounds in hydroxytyrosol and tyrosol “are found in olive oil mainly in the esterified forms of oleacein (3,4‑DHPEA – EDA) and oleocanthal (p‑DHPEA – EDA) as well as oleuropein aglycon (3,4‑DHPEA-EA) and ligstroside aglycon (p‑HPEA-EA), which all have significant biological activities.” However, the researchers also suggest that in particular, “oleuropein aglycon and ligstroside aglycon are terms that are not accurately defined and are often used in a misleading way.” Most notably the confusion comes from reporting the various complicated and descriptive names, “hydroxylated form, monoaldehydic form, dialdehydic form, hydrated form, open ring, closed ring, carboxylated, decarboxylated” and so forth.
During their research, Panagiotis Diamantakos1, Angeliki Velkou, Brian Killday, Thanasis Gimisis, Eleni Melliou1, and Prokopios Magiatis discovered for the first time ever, new olive oil (OO) ingredients belonging to the oleuropein and ligstroside aglycon family. The researchers suggest naming the new compounds oleokoronal, oleomissional and ligstrodial “to minimize the confusion arising from the use of complicated or abbreviated names.”
To discover the compounds, the researchers conducted screening of 2,000 varieties of OO using NMR analysis. To ensure the results were not an artifact of the extraction and dilution process, and to prove that they were real ingredients, the researchers used aextra virgin olive oil sample without any solvent and put it through an excitation pulse experiment before comparing it to a diluted form of the same EVOO. The experiment revealed “the enol form 14 of ligstroside aglycon” for bothextra virgin olive oil samples, indicating that the ingredients were real.
According to the research, Koroneiki and Mission varieties were the first observableextra virgin olive oil varieties discovered to contain oleokoronal and oleomissional. The authors stated that “in most of the oils studied the concentration of oleokoronal and oleomissional and of the related dialdehydes was lower than that of oleocanthal and oleacein and in many cases they were totally absent.”
At this stage, it appears that these newly noted phenolics are only present in certain varieties, or may be dependent on the production parameters of oils.
More articles on: chemical analysis of olive oil, NMR (Nuclear Magnetic Resonance), oleocanthal
Apr. 14, 2025
Study Shows Potential Health Benefits of Hydroxytyrosol
Hydroxytyrosol, a phenolic compound found in extra virgin olive oil, can lower levels of oxidized LDL cholesterol and may have potential cardiovascular and neuroprotective benefits.
May. 6, 2025
Italian Health Institute Publishes Mediterranean Diet Guidelines
The 600-page document includes useful health information for physicians, evidence for policymakers and recommendations for the general population.
Jun. 11, 2025
EFSA Panel Rejects Some Olive Oil Polyphenol Health Claims
The panel rejected two submissions from Italy and Spain, stating that the scientific evidence fell short of the requirements.
Jun. 19, 2025
Research Demonstrates Potential of Oleuropein in Bowel Disease Treatment
Oleuropein is well-known for its many therapeutic effects. A new study delves into its coloprotective mechanisms, opening the door to new treatment methods.
May. 6, 2025
Study Links Ultra-Processed Foods to Diabetes and Mortality Rates
New research suggests that consumption of ultra-processed foods may increase the risk of type 2 diabetes and premature death.
Jul. 8, 2025
International Workshop Addresses Climate Change Threats to Olive Trees
International Olive Council and partners gathered in Italy to strengthen collaboration in olive genetics, facing climate change and pathogens.
Mar. 18, 2025
Exploring Olive Oil's Impact on Mental Well-being
The potential benefits of the Mediterranean diet for mental health warrant further research to identify the operative mechanisms.
Feb. 11, 2025
Olive Oil-Based Films May Soon Replace Plastic Food Packaging
Researchers in Turkey have developed biodegradable oleofilms, which can prolong the shelf life of perishable foods by slowing oxidation.