News Briefs
Changes in phenolic profiles during olive ripening play a crucial role in resistance to anthracnose, a disease caused by the Colletotrichum fungus, which leads to significant crop losses and renders contaminated olive oil unsuitable for consumption. Research conducted by the University of Córdoba’s olive genetics group found that varieties with high phenolic concentrations and specific phenols exhibit greater resistance to the fungus, providing valuable information for policymakers, farmers, and researchers looking to develop more resistant olive tree hybrids.
Scientists from the University of Córdoba’s olive genetics research group have found that changes in the phenolic profiles during the olive ripening process play a fundamental role in the resistance to anthracnose.
The economically damaging olive tree disease is caused by the Colletotrichum fungus. The fungus causes severe rot in olives, leading to significant crop losses.
Olive oil from olives contaminated by fungus has higher acidity and organoleptic defects. It usually falls into the lampante category and is unsuitable for human consumption.
See Also:Researchers Identify Three Olive Varieties Resistant to Pervasive Fungus“We analyzed six varieties for two years, carrying out analyses of phenolic compounds and resistance tests to the pathogen,” said Hristofor Miho, a PhD student at the University of Córdoba and first author of the study.
“The results allowed us to observe that resistance was greater in varieties with high phenolic concentrations and specific phenols present in them,” he added.
The researchers selected Empeltre and Frantoio cultivars, known for their resistance to the fungus; Hojiblanca and Picudo, known for their lack of resistance; and Barnea and Picual, considered moderately resistant.
Olives were harvested from the World Olive Germplasm Bank of Córdoba before they began to ripen and at three ripening stages: green, turning and ripe.
Samples were taken to determine the olives’ phenolic profiles, and they were then inoculated using spores of the most common Colletotrichum strain found in Spain and Italy.
While all green olives are immune to the fungus, they accumulate inactive Colletotrichum infections in the form of appressoria, an organ-like structure that penetrates the fruit.
“This infection remains latent during fruit development until ripening, resulting in pathogen reactivation and disease development,” the researchers wrote. “Subsequently, olive fruit susceptibility to the pathogen increases during ripening, while in parallel, there is a decrease in total phenolic compounds.”
The researchers also isolated seven standard phenolic compounds to test their antifungal activity: hydroxytyrosol, tyrosol, oleuropein, oleuropein aglycone, oleacein, oleocanthal and hydroxytyrosol 4‑O-glucoside.
“Oleocanthal exhibited the highest inhibitory activity, followed by oleacein, oleuropein aglycone, hydroxytyrosol and tyrosol,” the researchers wrote.
See Also:Genotype Plays Significant Role in Fatty Acid Content of Virgin Olive OilOleuropein, ligstroside (the precursor of oleocanthal) and their derivatives, including oleacein, were the most critical compounds inhibiting spore germination.
The compounds are predominant in all green fruits regardless of cultivar and represent more than 90 percent of total phenols during ripening of the main resistant cultivars.
Meanwhile, susceptible cultivars converted oleuropein, oleacein and oleocanthal into hydroxytyrosol-4-O-glucoside as they ripened, which reduced anthracnose tolerance.
“Overall, resistant cultivars induced the synthesis of aldehydic and demethylated forms of phenols [oleuropein, oleocanthal and oleacein], which highly inhibited fungal spore germination,” the researchers wrote. “In contrast, susceptible cultivars promoted the synthesis of hydroxytyrosol 4‑O-glucoside during ripening, a compound with no antifungal effect.”
They further found that a total phenolic concentration of 50,000 milligrams per kilogram in all samples of developing olives across cultivars completely inhibited spore germination.
The researchers observed that cultivars susceptible to the fungus experienced a 73 percent decline in phenolic compounds during ripening, while resistant cultivars experienced a 28 percent decline.
“The sharp phenolic reduction of the susceptible cultivars caused the complete reduction of the antifungal activity,” they wrote. “Interestingly, the lesser phenolic decrease of the resistant cultivars did not reduce the inhibitory effect of spore germination.”
Juan Moral, who oversaw the research, said the study would help policymakers and farmers select new varieties to plant and inform researchers about what varieties to crossbreed for more resistant hybrids.
“Knowing how the phenolic cascades [changes in the phenolic compounds] behave in the different varieties will allow us to better select, based on scientific criteria, the parents that should be used so that the following generations of olive trees are resistant to this disease,” he concluded.
More articles on: olive oil research, pests, polyphenols
Nov. 4, 2025
New Research Strengthens Link Between Olive Oil Polyphenols and Cardiovascular Health
A new study shows that extra virgin olive oils rich in polyphenols may provide greater cardiovascular benefits than low-phenolic varieties, improving cholesterol profiles and heart function.
Oct. 20, 2025
Mediterranean Diet Adherence May Reduce Digestive Disorders
Researchers from Mass General Brigham found that close adherence to Mediterranean and plant-based diets was associated with lower instances of chronic constipation.
Nov. 26, 2025
Global Olive Oil Production Hits Record 3.5 Million Tons
A new report forecasts global olive oil production at a record 3.507 million tons for 2024/25, driven by strong recovery in Spain and rising output in non-EU countries.
Jan. 13, 2025
Olive Oil Production Comes to French Capital
Neighbors in the southern Parisian suburb of Malakoff joined together late last year to harvest their olives and press olive oil.
Apr. 21, 2025
Meet the Bacteria Devastating Olive Groves and Vineyards
Xylella fastidiosa, a bacterium causing plant diseases, has an annual economic impact of €5.5 billion in Europe. Its spread is linked to climate change.
Apr. 15, 2025
Spanish Researchers Study Salt Stress on Olive Trees
The researchers recommend using salt-tolerant cultivars or rootstocks for sustainable agriculture.
Dec. 14, 2024
E.U Report Predicts Stagnant Olive Oil Market
Olive oil production and consumption will be flat or slightly declining over the next ten years, a European Commission report predicts.
Apr. 9, 2025
South African Olive Farm Prepares for Challenging Harvest Season
Learn about the challenges and sustainable olive oil production at Tokara Olives, a top producer in South Africa's Western Cape.