Health

Researchers at the University of Granada have developed nanoparticles of maslinic acid, a natural compound derived from olive oil production waste, which show potential in combating various cancers. The team’s approach aims to enhance effectiveness and broaden the applications of maslinic acid in oncology, offering a promising tool in the fight against cancer with reduced side effects and increased selectivity.
Researchers at the University of Granada have developed nanoparticles of maslinic acid, a natural compound derived from olive oil production waste.
These nanoparticles exhibit remarkable potential in combating various cancers, including breast, colon, pancreatic and prostate. The team’s approach aims to enhance effectiveness and broaden the maslinic acid applications in oncology.
This is a major leap forward in the search for new therapeutic strategies that produce fewer side effects and that are more selective in the fight against these two types of cancer (breast and pancreatic).- Juan Antonio Marchal Corrales, researcher, University of Granada
Maslinic acid is a naturally occurring compound extracted from the byproducts of olive oil production. It boasts a range of significant health benefits, making it a valuable candidate for medical research.
Among its notable attributes, maslinic acid demonstrates potent antioxidant properties, shielding the body from oxidative stress and mitigating the risk of diseases associated with oxidative damage, such as cardiovascular conditions, cancer, and premature aging.
See Also:Health NewsIn addition, maslinic acid exhibits anti-inflammatory effects and is an effective antimicrobial agent against various bacteria and fungi.
This antimicrobial activity aids in combating infections and inhibiting the proliferation of harmful microorganisms within the body. However, maslinic acid’s most distinguishing feature lies in its potential to fight cancer.
Laboratory tests on cells revealed maslinic acid’s promising role as a cancer cell growth inhibitor, promoting programmed cell death (apoptosis) in multiple cancer types, including breast, colon and prostate cancer.
Maslinic acid
Maslinic acid, derived from dry olive pomace, a byproduct of olive oil production, belongs to the triterpene group known as oleananes. This bioactive compound shows promise in various aspects of health. It inhibits serine proteases crucial for HIV spread, displays anti-cancer properties against colon cells, and enhances glutamate reuptake, potentially reducing nerve cell damage. With its antioxidative effects against harmful reactive species and the ability to curb inflammation, maslinic acid may support protein synthesis, growth, and joint health. It also serves as a glycogen phosphorylase inhibitor, increasing glycogen storage in the liver.
It also impedes angiogenesis, the process by which new blood vessels nourish tumors. Due to its versatility and therapeutic potential, maslinic acid has garnered substantial interest in the medical and healthcare sectors. Nevertheless, its practical application has been limited due to its low water solubility, measuring at a mere 3.6 micrograms per liter.
The breakthrough the University of Granada researchers achieved involves engineering nanoparticles that significantly enhance maslinic acid’s solubility in aqueous solutions, surpassing one million times its original solubility.
This critical advancement enables the compound’s utilization across various fields. Moreover, these nanoparticles are designed to transport other water-insoluble drugs within them, resulting in a dual antitumor effect – a combination of the maslinic acid’s inherent properties and the potency of the encapsulated drug. This innovation holds great promise for enhancing the efficacy of cancer treatments.
The resulting nanoparticles have a size ranging between 120 and 160 nanometers, exhibit uniform dispersion and remarkable stability and retain their properties for up to six months when stored.
Cell-based assays demonstrated the cytotoxic activity of these nanoparticles against breast and pancreatic cancer cell lines, with lower toxicity observed in healthy cells (fibroblasts).
Additionally, the rapid internalization of these nanoparticles by cancer cells was observed, demonstrating their capacity to transport widely used chemotherapy drugs for pancreatic and breast cancer – paclitaxel and docetaxel, respectively.
Experiments on mice verified the nanoparticles’ non-toxic nature and suitability for intravenous and oral administration.
Notably, oral administration is preferred by patients due to its high acceptability. These nanoparticles are formulated with a polymeric shell that permits the attachment of targeting molecules, facilitating a more selective antitumor treatment, specifically targeting tumor cells while sparing healthy ones.
“We have seen that these nanoparticles, whether administered intravenously or orally, are all able to reach the different organs in the body,” said Juan Antonio Marchal Corrales, a researcher at the University of Granada and co-author of the study. “And, with proper targeting, we could target them directly to tumor cells, but not healthy cells.”
“This is a major leap forward in the search for new therapeutic strategies that produce fewer side effects and that are more selective in the fight against these two types of cancer, mainly triple-negative breast cancer and pancreatic cancer, which are cancers with a high mortality rate,” he added.
This system extends the potential applications of maslinic acid across various domains. These nanoparticles can be combined with different drugs and tailored to suit specific treatment requirements in cancer treatment. This versatility positions the nanosystem as a potent tool in the ongoing battle against cancer.
More articles on: breast cancer, cancer prevention, olive oil health
Feb. 11, 2025
Olive Oil-Based Films May Soon Replace Plastic Food Packaging
Researchers in Turkey have developed biodegradable oleofilms, which can prolong the shelf life of perishable foods by slowing oxidation.
Dec. 19, 2024
Olive Oil Producers Embrace Eco-Friendly Packaging
From new packaging material to reduced plastic designs, companies are reducing environmental impact and appeal to conscientious consumers.
Sep. 25, 2025
Poetica Gin Captures the Spirit of Brač
In Postira I discovered Poetica Gin — a spirit that opens with herbs and finishes with olive fruit, capturing the taste of Dalmatia.
Apr. 21, 2025
Meet the Bacteria Devastating Olive Groves and Vineyards
Xylella fastidiosa, a bacterium causing plant diseases, has an annual economic impact of €5.5 billion in Europe. Its spread is linked to climate change.
Jul. 17, 2025
Brussels Considers Changing Stance on Glyphosate and Cancer
The European Commission wants to review the raw data on a recent study linking glyphosate to cancer, possibly causing it to change its stance on the herbicide.
Aug. 11, 2025
Italian Olive Oil Sector Demonstrates Resilience in New Report
A report from Ismea showed that exports and organic farming in Italy expanded even as production and consumption continue to decline.
Mar. 26, 2025
Using Extra Virgin Olive Oil and Olive Mill Byproducts to Create Healthy Snacks
Researchers use extra virgin olive oil and a proprietary olive mill byproduct to bake polyphenol-enriched crackers.
Feb. 8, 2025
Spain and Italy Ask Restaurants to Comply with Olive Oil Container Laws
Spain and Italy are urging restaurants to comply with long-standing bans on refillable olive oil containers through new enforcement efforts and consumer awareness campaigns.