
Spain’s Ainia is developing new detection methods, including hyperspectral and thermal remote sensing, to identify and prevent the spread of olive tree pathogens, such as Xylella fastidiosa and verticillium, which could cost the Spanish olive oil industry billions of euros if left unchecked. These new methods, along with biocontrol measures and biostimulants, aim to provide a sustainable and organic alternative to pesticide regimes, ultimately benefitting the entire olive value chain from farmers to consumers.
Spain’s Agrifood Industrial Technology Center (Ainia) is developing a series of new detection methods to help olive farmers identify and stem the spread of common pathogens before their symptoms are manifested.
Using hyperspectral and thermal remote sensing, Ainia and its research partners will help identify olive trees infected by Xylella fastidiosa and verticillium, a fungus that attacks the roots of the olive tree and causes its leaves to wilt.
This modernization of cultivation practices will affect the entire olive value chain: from the farmer, through the transformer of the olive oil industry or table olives, to the final consumer.- Joaquín Espí, Ainia biotechnology technician
Both Xylella and verticillium have been spreading in Spain in recent years. According to new research published in the Proceedings of the National Academy of Sciences (PNAS), if left unchecked, Xylella fastidiosa alone could cost the Spanish olive oil producers up to €17 billion ($18.4 billion) over the next half-century.
Using traditional methods, it is currently not possible to detect the early onset of these two diseases in the olive groves. Officials at Ainia hope that the new detection methods they are working to develop will allow outbreaks to be caught earlier on.
See Also:More on Xylella Fastidiosa“Diseases that threaten the olive tree are one of the main concerns of farmers; especially those that, due to their virulence, such as Xylella fastidiosa or verticilliosis, can destroy hectares of olive groves in a few years,” Ana Torrejón, a biotechnology researcher at Ainia, said.
“Our objective is to develop an integrated strategy that allows us to respond to the olive oil production and olive oil sector in the fight against these olive diseases, so that an industry of great importance in our country can continue to progress,” she added.
The researchers plan to use drones to conduct the hyperspectral and thermal remote sensing. These drones would fly over the groves and create three-dimensional maps of the olive trees, detecting wavelengths of light that cannot be perceived by the human eye.
These same wavelengths, however, can give researchers information about the health of the olive trees and provide them with a window of opportunity to detect the onset of the disease before the symptoms have been physically manifested.
Along with testing new detection methods, Ainia is also working to develop new biocontrol measures and biostimulants.
Once fully developed and tested, the researchers believe that the biocontrol measures would present a sustainable and organic alternative for farmers who want to avoid using pesticide regimes to prevent the spread of the insects that serve as the main vectors for the two diseases.
Researchers also hope to be able to develop biostimulants that could be applied to olive trees and help increase their resistance to environmental stressors, such as pests, which make them more vulnerable to the disease.
When asked what types of biocontrol measures and biostimulants were being tested, Ainia declined to comment and said they preferred to wait for concrete results before discussing the type and effectiveness of their measures.
However, the researchers emphasized that anything they could learn from these detection and prevention trials would help stakeholders throughout the olive sector in the long run.
“This modernization of cultivation practices will affect the entire olive value chain: from the farmer, through the transformer of the olive oil industry or table olives, to the final consumer; that they will be able to access products produced in a sustainable way, free of chemical phytosanitary products,” Joaquín Espí, a technician from the Ainia biotechnology department, said.
More articles on: olive oil research, production, Spain
Jan. 9, 2025
Uruguay Anticipates Harvest Rebound
Good climate conditions and a promising fruit set portend a harvest rebound in Uruguay. While this year's yield will exceed the 2024 total, it will likely be less than in 2023.
Aug. 5, 2025
Debate Over Solar Plant Construction in Andalusian Olive Groves Intensifies
Solar developers and regional authorities insist the the mega-plants are necessary to help Spain meet its ambitious renewable energy goals. Olive farmers disagree.
Oct. 9, 2025
Alarm in Gargano as Xylella Reaches New Northern Front
A new Xylella fastidiosa outbreak near Cagnano Varano marks the bacterium’s northernmost spread in Puglia, prompting containment efforts and genetic analysis to trace its origin.
Nov. 4, 2025
Willow Creek’s Cooperative Approach Brings Stability to Olive Growers
Inspired by models in Europe and Chile, Willow Creek’s Guild of Groves brings 35 South African olive growers together to share resources, reduce costs, and boost quality.
Dec. 4, 2025
Traditional Growers Unite to Defend Spain’s Historic Olive Groves
Three dozen cooperatives representing 15,000 farmers have launched the Traditional Olive Grove Association, aiming to defend Spain’s historic olive-growing landscapes amid rising pressure from industrial groves.
Dec. 16, 2024
Researchers Investigate Olive Powder as Food Ingredient
Freeze-drying may hold the answer to recovering value from the discarded fruit in table olive production.
Dec. 4, 2025
China Bets on Hubei to Lead the Next Phase of Olive Oil Development
Hubei, China’s smallest olive-producing region, is investing heavily in research and olive milling byproducts as it seeks to become a national hub for the industry.
Oct. 15, 2025
Madrid Region Bans Solar Panels on Agricultural Land
Local authorities said the ban is necessary to protect olive and vine cultivation and comes as part of a wider effort to add value to local olive oil production.